\(\int \frac {\csc ^5(c+d x)}{(a+a \sec (c+d x))^3} \, dx\) [99]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [A] (verified)
   Fricas [B] (verification not implemented)
   Sympy [F]
   Maxima [A] (verification not implemented)
   Giac [A] (verification not implemented)
   Mupad [B] (verification not implemented)

Optimal result

Integrand size = 21, antiderivative size = 128 \[ \int \frac {\csc ^5(c+d x)}{(a+a \sec (c+d x))^3} \, dx=\frac {3 \text {arctanh}(\cos (c+d x))}{128 a^3 d}-\frac {1}{128 a d (a-a \cos (c+d x))^2}-\frac {a^2}{40 d (a+a \cos (c+d x))^5}+\frac {3 a}{64 d (a+a \cos (c+d x))^4}-\frac {1}{64 a d (a+a \cos (c+d x))^2}-\frac {3}{128 d \left (a^3+a^3 \cos (c+d x)\right )} \]

[Out]

3/128*arctanh(cos(d*x+c))/a^3/d-1/128/a/d/(a-a*cos(d*x+c))^2-1/40*a^2/d/(a+a*cos(d*x+c))^5+3/64*a/d/(a+a*cos(d
*x+c))^4-1/64/a/d/(a+a*cos(d*x+c))^2-3/128/d/(a^3+a^3*cos(d*x+c))

Rubi [A] (verified)

Time = 0.25 (sec) , antiderivative size = 128, normalized size of antiderivative = 1.00, number of steps used = 6, number of rules used = 5, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.238, Rules used = {3957, 2915, 12, 90, 212} \[ \int \frac {\csc ^5(c+d x)}{(a+a \sec (c+d x))^3} \, dx=\frac {3 \text {arctanh}(\cos (c+d x))}{128 a^3 d}-\frac {3}{128 d \left (a^3 \cos (c+d x)+a^3\right )}-\frac {a^2}{40 d (a \cos (c+d x)+a)^5}+\frac {3 a}{64 d (a \cos (c+d x)+a)^4}-\frac {1}{128 a d (a-a \cos (c+d x))^2}-\frac {1}{64 a d (a \cos (c+d x)+a)^2} \]

[In]

Int[Csc[c + d*x]^5/(a + a*Sec[c + d*x])^3,x]

[Out]

(3*ArcTanh[Cos[c + d*x]])/(128*a^3*d) - 1/(128*a*d*(a - a*Cos[c + d*x])^2) - a^2/(40*d*(a + a*Cos[c + d*x])^5)
 + (3*a)/(64*d*(a + a*Cos[c + d*x])^4) - 1/(64*a*d*(a + a*Cos[c + d*x])^2) - 3/(128*d*(a^3 + a^3*Cos[c + d*x])
)

Rule 12

Int[(a_)*(u_), x_Symbol] :> Dist[a, Int[u, x], x] /; FreeQ[a, x] &&  !MatchQ[u, (b_)*(v_) /; FreeQ[b, x]]

Rule 90

Int[((a_.) + (b_.)*(x_))^(m_.)*((c_.) + (d_.)*(x_))^(n_.)*((e_.) + (f_.)*(x_))^(p_.), x_Symbol] :> Int[ExpandI
ntegrand[(a + b*x)^m*(c + d*x)^n*(e + f*x)^p, x], x] /; FreeQ[{a, b, c, d, e, f, p}, x] && IntegersQ[m, n] &&
(IntegerQ[p] || (GtQ[m, 0] && GeQ[n, -1]))

Rule 212

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[-b, 2]))*ArcTanh[Rt[-b, 2]*(x/Rt[a, 2])], x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 2915

Int[cos[(e_.) + (f_.)*(x_)]^(p_)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.)*((c_.) + (d_.)*sin[(e_.) + (f_.)
*(x_)])^(n_.), x_Symbol] :> Dist[1/(b^p*f), Subst[Int[(a + x)^(m + (p - 1)/2)*(a - x)^((p - 1)/2)*(c + (d/b)*x
)^n, x], x, b*Sin[e + f*x]], x] /; FreeQ[{a, b, e, f, c, d, m, n}, x] && IntegerQ[(p - 1)/2] && EqQ[a^2 - b^2,
 0]

Rule 3957

Int[(cos[(e_.) + (f_.)*(x_)]*(g_.))^(p_.)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_.), x_Symbol] :> Int[(g*Co
s[e + f*x])^p*((b + a*Sin[e + f*x])^m/Sin[e + f*x]^m), x] /; FreeQ[{a, b, e, f, g, p}, x] && IntegerQ[m]

Rubi steps \begin{align*} \text {integral}& = -\int \frac {\cot ^3(c+d x) \csc ^2(c+d x)}{(-a-a \cos (c+d x))^3} \, dx \\ & = \frac {a^5 \text {Subst}\left (\int \frac {x^3}{a^3 (-a-x)^3 (-a+x)^6} \, dx,x,-a \cos (c+d x)\right )}{d} \\ & = \frac {a^2 \text {Subst}\left (\int \frac {x^3}{(-a-x)^3 (-a+x)^6} \, dx,x,-a \cos (c+d x)\right )}{d} \\ & = \frac {a^2 \text {Subst}\left (\int \left (-\frac {1}{8 (a-x)^6}+\frac {3}{16 a (a-x)^5}-\frac {1}{32 a^3 (a-x)^3}-\frac {3}{128 a^4 (a-x)^2}+\frac {1}{64 a^3 (a+x)^3}-\frac {3}{128 a^4 \left (a^2-x^2\right )}\right ) \, dx,x,-a \cos (c+d x)\right )}{d} \\ & = -\frac {1}{128 a d (a-a \cos (c+d x))^2}-\frac {a^2}{40 d (a+a \cos (c+d x))^5}+\frac {3 a}{64 d (a+a \cos (c+d x))^4}-\frac {1}{64 a d (a+a \cos (c+d x))^2}-\frac {3}{128 d \left (a^3+a^3 \cos (c+d x)\right )}-\frac {3 \text {Subst}\left (\int \frac {1}{a^2-x^2} \, dx,x,-a \cos (c+d x)\right )}{128 a^2 d} \\ & = \frac {3 \text {arctanh}(\cos (c+d x))}{128 a^3 d}-\frac {1}{128 a d (a-a \cos (c+d x))^2}-\frac {a^2}{40 d (a+a \cos (c+d x))^5}+\frac {3 a}{64 d (a+a \cos (c+d x))^4}-\frac {1}{64 a d (a+a \cos (c+d x))^2}-\frac {3}{128 d \left (a^3+a^3 \cos (c+d x)\right )} \\ \end{align*}

Mathematica [A] (verified)

Time = 3.78 (sec) , antiderivative size = 137, normalized size of antiderivative = 1.07 \[ \int \frac {\csc ^5(c+d x)}{(a+a \sec (c+d x))^3} \, dx=-\frac {\left (4-15 \cos ^2\left (\frac {1}{2} (c+d x)\right )+60 \cos ^8\left (\frac {1}{2} (c+d x)\right )+10 \cos ^6\left (\frac {1}{2} (c+d x)\right ) \left (2+\cot ^4\left (\frac {1}{2} (c+d x)\right )\right )-120 \cos ^{10}\left (\frac {1}{2} (c+d x)\right ) \left (\log \left (\cos \left (\frac {1}{2} (c+d x)\right )\right )-\log \left (\sin \left (\frac {1}{2} (c+d x)\right )\right )\right )\right ) \sec ^4\left (\frac {1}{2} (c+d x)\right ) \sec ^3(c+d x)}{640 a^3 d (1+\sec (c+d x))^3} \]

[In]

Integrate[Csc[c + d*x]^5/(a + a*Sec[c + d*x])^3,x]

[Out]

-1/640*((4 - 15*Cos[(c + d*x)/2]^2 + 60*Cos[(c + d*x)/2]^8 + 10*Cos[(c + d*x)/2]^6*(2 + Cot[(c + d*x)/2]^4) -
120*Cos[(c + d*x)/2]^10*(Log[Cos[(c + d*x)/2]] - Log[Sin[(c + d*x)/2]]))*Sec[(c + d*x)/2]^4*Sec[c + d*x]^3)/(a
^3*d*(1 + Sec[c + d*x])^3)

Maple [A] (verified)

Time = 0.99 (sec) , antiderivative size = 91, normalized size of antiderivative = 0.71

method result size
derivativedivides \(\frac {-\frac {1}{40 \left (\cos \left (d x +c \right )+1\right )^{5}}+\frac {3}{64 \left (\cos \left (d x +c \right )+1\right )^{4}}-\frac {1}{64 \left (\cos \left (d x +c \right )+1\right )^{2}}-\frac {3}{128 \left (\cos \left (d x +c \right )+1\right )}+\frac {3 \ln \left (\cos \left (d x +c \right )+1\right )}{256}-\frac {1}{128 \left (\cos \left (d x +c \right )-1\right )^{2}}-\frac {3 \ln \left (\cos \left (d x +c \right )-1\right )}{256}}{d \,a^{3}}\) \(91\)
default \(\frac {-\frac {1}{40 \left (\cos \left (d x +c \right )+1\right )^{5}}+\frac {3}{64 \left (\cos \left (d x +c \right )+1\right )^{4}}-\frac {1}{64 \left (\cos \left (d x +c \right )+1\right )^{2}}-\frac {3}{128 \left (\cos \left (d x +c \right )+1\right )}+\frac {3 \ln \left (\cos \left (d x +c \right )+1\right )}{256}-\frac {1}{128 \left (\cos \left (d x +c \right )-1\right )^{2}}-\frac {3 \ln \left (\cos \left (d x +c \right )-1\right )}{256}}{d \,a^{3}}\) \(91\)
parallelrisch \(\frac {-4 \tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{10}-5 \tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{8}+20 \tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{6}+30 \tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}-10 \cot \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}-60 \tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-20 \cot \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-120 \ln \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{5120 a^{3} d}\) \(113\)
norman \(\frac {-\frac {1}{512 a d}-\frac {\tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{12}}{1024 a d}-\frac {\tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{14}}{1280 a d}-\frac {\tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}{256 d a}-\frac {3 \tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{6}}{256 d a}+\frac {3 \tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{8}}{512 d a}+\frac {\tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{10}}{256 d a}}{\tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{4} a^{2}}-\frac {3 \ln \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{128 a^{3} d}\) \(158\)
risch \(-\frac {15 \,{\mathrm e}^{13 i \left (d x +c \right )}+90 \,{\mathrm e}^{12 i \left (d x +c \right )}+170 \,{\mathrm e}^{11 i \left (d x +c \right )}-30 \,{\mathrm e}^{10 i \left (d x +c \right )}+1521 \,{\mathrm e}^{9 i \left (d x +c \right )}+1476 \,{\mathrm e}^{8 i \left (d x +c \right )}+3756 \,{\mathrm e}^{7 i \left (d x +c \right )}+1476 \,{\mathrm e}^{6 i \left (d x +c \right )}+1521 \,{\mathrm e}^{5 i \left (d x +c \right )}-30 \,{\mathrm e}^{4 i \left (d x +c \right )}+170 \,{\mathrm e}^{3 i \left (d x +c \right )}+90 \,{\mathrm e}^{2 i \left (d x +c \right )}+15 \,{\mathrm e}^{i \left (d x +c \right )}}{320 a^{3} d \left ({\mathrm e}^{i \left (d x +c \right )}+1\right )^{10} \left ({\mathrm e}^{i \left (d x +c \right )}-1\right )^{4}}+\frac {3 \ln \left ({\mathrm e}^{i \left (d x +c \right )}+1\right )}{128 a^{3} d}-\frac {3 \ln \left ({\mathrm e}^{i \left (d x +c \right )}-1\right )}{128 a^{3} d}\) \(220\)

[In]

int(csc(d*x+c)^5/(a+a*sec(d*x+c))^3,x,method=_RETURNVERBOSE)

[Out]

1/d/a^3*(-1/40/(cos(d*x+c)+1)^5+3/64/(cos(d*x+c)+1)^4-1/64/(cos(d*x+c)+1)^2-3/128/(cos(d*x+c)+1)+3/256*ln(cos(
d*x+c)+1)-1/128/(cos(d*x+c)-1)^2-3/256*ln(cos(d*x+c)-1))

Fricas [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 317 vs. \(2 (117) = 234\).

Time = 0.27 (sec) , antiderivative size = 317, normalized size of antiderivative = 2.48 \[ \int \frac {\csc ^5(c+d x)}{(a+a \sec (c+d x))^3} \, dx=-\frac {30 \, \cos \left (d x + c\right )^{6} + 90 \, \cos \left (d x + c\right )^{5} + 40 \, \cos \left (d x + c\right )^{4} - 120 \, \cos \left (d x + c\right )^{3} + 122 \, \cos \left (d x + c\right )^{2} - 15 \, {\left (\cos \left (d x + c\right )^{7} + 3 \, \cos \left (d x + c\right )^{6} + \cos \left (d x + c\right )^{5} - 5 \, \cos \left (d x + c\right )^{4} - 5 \, \cos \left (d x + c\right )^{3} + \cos \left (d x + c\right )^{2} + 3 \, \cos \left (d x + c\right ) + 1\right )} \log \left (\frac {1}{2} \, \cos \left (d x + c\right ) + \frac {1}{2}\right ) + 15 \, {\left (\cos \left (d x + c\right )^{7} + 3 \, \cos \left (d x + c\right )^{6} + \cos \left (d x + c\right )^{5} - 5 \, \cos \left (d x + c\right )^{4} - 5 \, \cos \left (d x + c\right )^{3} + \cos \left (d x + c\right )^{2} + 3 \, \cos \left (d x + c\right ) + 1\right )} \log \left (-\frac {1}{2} \, \cos \left (d x + c\right ) + \frac {1}{2}\right ) + 126 \, \cos \left (d x + c\right ) + 32}{1280 \, {\left (a^{3} d \cos \left (d x + c\right )^{7} + 3 \, a^{3} d \cos \left (d x + c\right )^{6} + a^{3} d \cos \left (d x + c\right )^{5} - 5 \, a^{3} d \cos \left (d x + c\right )^{4} - 5 \, a^{3} d \cos \left (d x + c\right )^{3} + a^{3} d \cos \left (d x + c\right )^{2} + 3 \, a^{3} d \cos \left (d x + c\right ) + a^{3} d\right )}} \]

[In]

integrate(csc(d*x+c)^5/(a+a*sec(d*x+c))^3,x, algorithm="fricas")

[Out]

-1/1280*(30*cos(d*x + c)^6 + 90*cos(d*x + c)^5 + 40*cos(d*x + c)^4 - 120*cos(d*x + c)^3 + 122*cos(d*x + c)^2 -
 15*(cos(d*x + c)^7 + 3*cos(d*x + c)^6 + cos(d*x + c)^5 - 5*cos(d*x + c)^4 - 5*cos(d*x + c)^3 + cos(d*x + c)^2
 + 3*cos(d*x + c) + 1)*log(1/2*cos(d*x + c) + 1/2) + 15*(cos(d*x + c)^7 + 3*cos(d*x + c)^6 + cos(d*x + c)^5 -
5*cos(d*x + c)^4 - 5*cos(d*x + c)^3 + cos(d*x + c)^2 + 3*cos(d*x + c) + 1)*log(-1/2*cos(d*x + c) + 1/2) + 126*
cos(d*x + c) + 32)/(a^3*d*cos(d*x + c)^7 + 3*a^3*d*cos(d*x + c)^6 + a^3*d*cos(d*x + c)^5 - 5*a^3*d*cos(d*x + c
)^4 - 5*a^3*d*cos(d*x + c)^3 + a^3*d*cos(d*x + c)^2 + 3*a^3*d*cos(d*x + c) + a^3*d)

Sympy [F]

\[ \int \frac {\csc ^5(c+d x)}{(a+a \sec (c+d x))^3} \, dx=\frac {\int \frac {\csc ^{5}{\left (c + d x \right )}}{\sec ^{3}{\left (c + d x \right )} + 3 \sec ^{2}{\left (c + d x \right )} + 3 \sec {\left (c + d x \right )} + 1}\, dx}{a^{3}} \]

[In]

integrate(csc(d*x+c)**5/(a+a*sec(d*x+c))**3,x)

[Out]

Integral(csc(c + d*x)**5/(sec(c + d*x)**3 + 3*sec(c + d*x)**2 + 3*sec(c + d*x) + 1), x)/a**3

Maxima [A] (verification not implemented)

none

Time = 0.20 (sec) , antiderivative size = 188, normalized size of antiderivative = 1.47 \[ \int \frac {\csc ^5(c+d x)}{(a+a \sec (c+d x))^3} \, dx=-\frac {\frac {2 \, {\left (15 \, \cos \left (d x + c\right )^{6} + 45 \, \cos \left (d x + c\right )^{5} + 20 \, \cos \left (d x + c\right )^{4} - 60 \, \cos \left (d x + c\right )^{3} + 61 \, \cos \left (d x + c\right )^{2} + 63 \, \cos \left (d x + c\right ) + 16\right )}}{a^{3} \cos \left (d x + c\right )^{7} + 3 \, a^{3} \cos \left (d x + c\right )^{6} + a^{3} \cos \left (d x + c\right )^{5} - 5 \, a^{3} \cos \left (d x + c\right )^{4} - 5 \, a^{3} \cos \left (d x + c\right )^{3} + a^{3} \cos \left (d x + c\right )^{2} + 3 \, a^{3} \cos \left (d x + c\right ) + a^{3}} - \frac {15 \, \log \left (\cos \left (d x + c\right ) + 1\right )}{a^{3}} + \frac {15 \, \log \left (\cos \left (d x + c\right ) - 1\right )}{a^{3}}}{1280 \, d} \]

[In]

integrate(csc(d*x+c)^5/(a+a*sec(d*x+c))^3,x, algorithm="maxima")

[Out]

-1/1280*(2*(15*cos(d*x + c)^6 + 45*cos(d*x + c)^5 + 20*cos(d*x + c)^4 - 60*cos(d*x + c)^3 + 61*cos(d*x + c)^2
+ 63*cos(d*x + c) + 16)/(a^3*cos(d*x + c)^7 + 3*a^3*cos(d*x + c)^6 + a^3*cos(d*x + c)^5 - 5*a^3*cos(d*x + c)^4
 - 5*a^3*cos(d*x + c)^3 + a^3*cos(d*x + c)^2 + 3*a^3*cos(d*x + c) + a^3) - 15*log(cos(d*x + c) + 1)/a^3 + 15*l
og(cos(d*x + c) - 1)/a^3)/d

Giac [A] (verification not implemented)

none

Time = 0.45 (sec) , antiderivative size = 232, normalized size of antiderivative = 1.81 \[ \int \frac {\csc ^5(c+d x)}{(a+a \sec (c+d x))^3} \, dx=\frac {\frac {10 \, {\left (\frac {2 \, {\left (\cos \left (d x + c\right ) - 1\right )}}{\cos \left (d x + c\right ) + 1} + \frac {9 \, {\left (\cos \left (d x + c\right ) - 1\right )}^{2}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{2}} - 1\right )} {\left (\cos \left (d x + c\right ) + 1\right )}^{2}}{a^{3} {\left (\cos \left (d x + c\right ) - 1\right )}^{2}} - \frac {60 \, \log \left (\frac {{\left | -\cos \left (d x + c\right ) + 1 \right |}}{{\left | \cos \left (d x + c\right ) + 1 \right |}}\right )}{a^{3}} + \frac {\frac {60 \, a^{12} {\left (\cos \left (d x + c\right ) - 1\right )}}{\cos \left (d x + c\right ) + 1} + \frac {30 \, a^{12} {\left (\cos \left (d x + c\right ) - 1\right )}^{2}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{2}} - \frac {20 \, a^{12} {\left (\cos \left (d x + c\right ) - 1\right )}^{3}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{3}} - \frac {5 \, a^{12} {\left (\cos \left (d x + c\right ) - 1\right )}^{4}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{4}} + \frac {4 \, a^{12} {\left (\cos \left (d x + c\right ) - 1\right )}^{5}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{5}}}{a^{15}}}{5120 \, d} \]

[In]

integrate(csc(d*x+c)^5/(a+a*sec(d*x+c))^3,x, algorithm="giac")

[Out]

1/5120*(10*(2*(cos(d*x + c) - 1)/(cos(d*x + c) + 1) + 9*(cos(d*x + c) - 1)^2/(cos(d*x + c) + 1)^2 - 1)*(cos(d*
x + c) + 1)^2/(a^3*(cos(d*x + c) - 1)^2) - 60*log(abs(-cos(d*x + c) + 1)/abs(cos(d*x + c) + 1))/a^3 + (60*a^12
*(cos(d*x + c) - 1)/(cos(d*x + c) + 1) + 30*a^12*(cos(d*x + c) - 1)^2/(cos(d*x + c) + 1)^2 - 20*a^12*(cos(d*x
+ c) - 1)^3/(cos(d*x + c) + 1)^3 - 5*a^12*(cos(d*x + c) - 1)^4/(cos(d*x + c) + 1)^4 + 4*a^12*(cos(d*x + c) - 1
)^5/(cos(d*x + c) + 1)^5)/a^15)/d

Mupad [B] (verification not implemented)

Time = 13.76 (sec) , antiderivative size = 173, normalized size of antiderivative = 1.35 \[ \int \frac {\csc ^5(c+d x)}{(a+a \sec (c+d x))^3} \, dx=\frac {3\,\mathrm {atanh}\left (\cos \left (c+d\,x\right )\right )}{128\,a^3\,d}-\frac {\frac {3\,{\cos \left (c+d\,x\right )}^6}{128}+\frac {9\,{\cos \left (c+d\,x\right )}^5}{128}+\frac {{\cos \left (c+d\,x\right )}^4}{32}-\frac {3\,{\cos \left (c+d\,x\right )}^3}{32}+\frac {61\,{\cos \left (c+d\,x\right )}^2}{640}+\frac {63\,\cos \left (c+d\,x\right )}{640}+\frac {1}{40}}{d\,\left (a^3\,{\cos \left (c+d\,x\right )}^7+3\,a^3\,{\cos \left (c+d\,x\right )}^6+a^3\,{\cos \left (c+d\,x\right )}^5-5\,a^3\,{\cos \left (c+d\,x\right )}^4-5\,a^3\,{\cos \left (c+d\,x\right )}^3+a^3\,{\cos \left (c+d\,x\right )}^2+3\,a^3\,\cos \left (c+d\,x\right )+a^3\right )} \]

[In]

int(1/(sin(c + d*x)^5*(a + a/cos(c + d*x))^3),x)

[Out]

(3*atanh(cos(c + d*x)))/(128*a^3*d) - ((63*cos(c + d*x))/640 + (61*cos(c + d*x)^2)/640 - (3*cos(c + d*x)^3)/32
 + cos(c + d*x)^4/32 + (9*cos(c + d*x)^5)/128 + (3*cos(c + d*x)^6)/128 + 1/40)/(d*(3*a^3*cos(c + d*x) + a^3 +
a^3*cos(c + d*x)^2 - 5*a^3*cos(c + d*x)^3 - 5*a^3*cos(c + d*x)^4 + a^3*cos(c + d*x)^5 + 3*a^3*cos(c + d*x)^6 +
 a^3*cos(c + d*x)^7))